• Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
  • Visit
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • Online
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free + Community Events
      • Fundraising Events
      • Kids + Families
      • Members
      • Special Hours
      • Private Event Closures
    • Prices
    • Hours
    • Getting Here
    • Museum Map
    • Free Admission and Reduced Admission
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing & Reflections
        • Curator Statement
      • Gordon and Betty Moore Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Admission and Tickets
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Event Rentals
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • Moore East Gallery
      • Bechtel Central Gallery & Outdoor Gallery
      • Osher West Gallery
      • Kanbar Forum

      • Weddings
      • Proms and School Events
      • Daytime Meetings, Events, & Filmings
      • Happy Hour on the Water

      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Groups / Tour Operators
      • Group Visit Request Form
    • Exploratorium Store
    • Contact Us
  • Education
    • Black Teachers and Students Matter
    • Professional Development Programs
      • Free Educator Workshops
      • Professional Learning Partnerships
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Watch and Do Science
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
      • Cambio
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Recursos gratuitos para aprender ciencias
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
        • Spectrum
          • Arts
          • Behind the Scenes
          • News
          • Education
          • Community & Collaborations
          • Science
        • Eclipse
        • Studio for Public Spaces
        • Tangents
        • Resonance See & Hear Blog
        • Fabricated Realities
        • Tinkering Studio: Sketchpad
        • Exploratorium on Tumblr
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Our Story
    • Land Acknowledgment
    • Explore Our Reach
    • Impact Report
    • Awards
    • Our History
      • 50 Years 1969–2019

    • Leadership Cabinet
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists

    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
    • Teacher Institute
    • Institute for Inquiry
    • Explainer Programs
    • Studio for Public Spaces
    • Exhibit Making
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows

    • Job Opportunities
    • Become a Volunteer

    • Contact Info
    • Newsletter
    • Educator Newsletter
    • Blogs
    • Follow & Share
    • Press Office

    • FY21 Audit Report
    • 990 FY20 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate Today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join Our Donor Community
    • Engage Your Business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a Fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Volunteer
      • How to Apply
      • Application for Internships
      • Our Contract
      • Application for Individuals
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store

Masks and vaccinations are recommended. Plan your visit  

Visitor FAQ Buy Tickets Donate Today
Exploratorium
Exploratorium
  • Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
Science Snacks
Science activity that demonstrates photosynthesis

Photosynthetic Flotation

Light leaves leaves light.

Photosynthetic organisms capture energy from the sun and matter from the air to make the food we eat, while also producing the oxygen we breathe. In this Snack, oxygen produced during photosynthesis makes leaf bits float like bubbles in water.


Grade Bands: 
3-5
6-8
9-12
Subject: 
Biology
Ecology
Molecular & Cellular Biology
Nature of Science
Measurement
Science as a Process
Physics
Energy
Light
Keywords: 
photosynthesis
nature
respiration
buoyancy
plant
video
NGSS and EP&Cs: 
LS
LS1
LS2
CCCs
Patterns
Cause and Effect
Scale, Proportion, and Quantity
Structure and Function
Stability and Change

  • Facebook logo
  • Reddit logo
  • Twitter logo


Video Demonstration


Tools and Materials

  • Baking soda (sodium bicarbonate)
  • Gram scale
  • Water
  • Liquid dish soap
  • Spoon or other implement (for mixing solution)
  • Soda straw or hole punch
  • Spinach leaves or ivy leaves
  • 10-mL syringe (without a needle)
  • Clear plastic cup (1-cup size) or 250-mL beaker
  • Incandescent or 100-watt equivalent lightbulb in fixture (preferably with a clamp)
  • Timer
  • Notepaper and pencil (or similar) to record results
  • Optional: ring stand, foil, thermometer, ice, hot water, colored gel filters

Assembly

  1. Make a 0.1% bicarbonate solution by mixing 0.5 grams baking soda with 2 cups (500 mL) water. Add a few drops of liquid dish soap to this solution and mix gently, trying to avoid making suds in the solution.
  2. Using the straw or hole punch, cut out 10 circles from your leaves (see photos below). (Straws work best with spinach; hole punches work best with ivy.)

  3. Remove the plunger from the syringe, and remove the cover from the tip, if there is one. Put the leaf disks into the barrel of the syringe, and tap them down to the tip. If you have a straw, you can blow the discs gently into the plunger (see photos below).

  4. Replace the plunger into the syringe, being careful not to touch or damage the leaf disks (see photo below).

  5. Pour 150 mL of bicarbonate solution into the cup. Try to avoid making suds.
  6. Draw about 6–8 mL of bicarbonate solution into the syringe. The leaf disks should float in the solution (see photos below).

  7. Hold the syringe with the tip up, and expel the air by gently pushing on the plunger.
  8. Plug the tip of the syringe tightly with your finger, and gently pull on the plunger, creating a slight vacuum. You should see tiny bubbles coming out of the leaf disks. Hold the vacuum for a few seconds, and then release the plunger, letting it snap back (see photos below). Some of the disks should begin to sink.

  9. Repeat the previous step several times, until all of the disks have sunk to the bottom of the solution (see photo below). (You may need to tap on the plunger to release the bubbles in order to make all the leaf disks sink.)

  10. When all the leaf disks have settled to the bottom of the solution, carefully remove the plunger and pour the disks and solution into the cup. They should settle to the bottom of the cup (see photos below). If any leaf disks float, remove them from the beaker.

  11. Set up your light fixture so that it is suspended about 12 inches (30 cm) above the table. You may want to use a ring stand for this.
  12. Place the beaker under the light fixture (see photo below).


To Do and Notice

Turn on the light, start a timer, and watch the leaf disks at the bottom of the cup. Notice any tiny bubbles forming around the edges and bottoms of the disks. After several minutes, the disks should begin floating to the top of the solution. Record the number of floating disks every minute, until all the disks are floating.

How long does it take for the first disk to float? How long does it take for half the disks to float? All the disks?

When all the disks have floated, try putting the cup in a dark cabinet or room, or cover the cup with aluminum foil. Check the cup after about fifteen minutes. What happens to the disks?


What’s Going On?

Plants occupy a fundamental part of the food chain and the carbon cycle due to their ability to carry out photosynthesis, the biochemical process of capturing and storing energy from the sun and matter from the air. At any given point in this experiment, the number of floating leaf disks is an indirect measurement of the net rate of photosynthesis.

In photosynthesis, plants use energy from the sun, water, and carbon dioxide (CO2) from the air to store carbon and energy in the form of glucose molecules. Oxygen gas (O2) is a byproduct of this reaction. Oxygen production by photosynthetic organisms explains why earth has an oxygen-rich atmosphere.

The equation for photosynthesis can be written as follows:

6CO2 + 6H2O + light energy → C6H12O6 + 6O2

In the leaf-disk assay, all of the components necessary for photosynthesis are present. The light source provides light energy, the solution provides water, and sodium bicarbonate provides dissolved CO2.

Plant material will generally float in water. This is because leaves have air in the spaces between cells, which helps them collect CO2 gas from their environment to use in photosynthesis. When you apply a gentle vacuum to the leaf disks in solution, this air is forced out and replaced with solution, causing the leaves to sink.

When you see tiny bubbles forming on the leaf disks during this experiment, you’re actually observing the net production of O2 gas as a byproduct of photosynthesis. Accumulation of O2 on the disks causes them to float. The rate of production of O2 can be affected by the intensity of the light source, but there is a maximum rate after which more light energy will not increase photosynthesis.

To use the energy stored by photosynthesis, plants (like all other organisms with mitochondria) use the process of respiration, which is basically the reverse of photosynthesis. In respiration, glucose is broken down to produce energy that can be used by the cell, a reaction that uses O2 and produces CO2 as a byproduct. Because the leaf disks are living plant material that still require energy, they are simultaneously using O2 gas during respiration and producing O2 gas during photosynthesis. Therefore, the bubbles of O2 that you see represent the net products of photosynthesis, minus the O2 used by respiration.

When you put floating leaf disks in the dark, they will eventually sink. Without light energy, no photosynthesis will occur, so no more O2 gas will be produced. However, respiration continues in the dark, so the disks will use the accumulated O2 gas. They will also produce CO2 gas during respiration, but CO2 dissolves into the surrounding water much more easily than O2 gas does and isn’t trapped in the interstitial spaces.


Going Further

Try changing other factors that might affect photosynthesis and see what happens. How long does it take for the disks to float under different conditions? For example, you can compare the effects of different types of light sources—lower- or higher-wattage incandescent, fluorescent, or LED bulbs. You can change the temperature of the solution by placing the beaker in an ice bath or a larger container of hot water. You can increase or decrease the concentration of sodium bicarbonate in the solution, or eliminate it entirely. You can try to identify the range of wavelengths of light used in photosynthesis by wrapping and covering the beaker with colored gel filters that remove certain wavelengths.


Teaching Tips

This experiment is extremely amenable to manipulations, making it possible for students to design investigations that will quantify the effects of different variables on the rate of photosynthesis. It is helpful to have students familiar with the basic protocol prior to changing the experimental conditions.

Ask your students to think carefully about how to isolate one variable at a time. It is important to hold certain parts of the experimental setup constant—for example, the distance from the light source to the beaker, the type of light bulb used, the temperature of the solution, the height of the solution, and so on. Certain treatments may eliminate photosynthesis altogether—water with no bicarbonate, very low temperature, and total darkness.

A typical way to collect data in this assay is to record the number of disks floating at regular one-minute time intervals. This is easily graphed, with time on the x-axis and number of floaters on the y-axis.

To make comparisons between treatments, the number traditionally used is the time point at which half of the disks in the sample were floating, also known as the E50.


Resources

This experiment was originally described in Steucek, Guy L., Robert J. Hill, and Class/Summer 1982. 1985. “Photosynthesis I: An Assay Utilizing Leaf Disks.” The American Biology Teacher, 47(2): 96–99.



Related Snacks

Science activity that uses a spectroscope to explore white light through leaf material
Leaf Filter

Even plants have their favorite colors.

Science activity that demonstrates the brightness of two light sources
Oil Spot Photometer

Compare the brightness of two light sources with an oil spot on a white card.

Science activity that demonstrates fluid pressure and buoyancy
Condiment Diver

As René Descartes (almost) said, "I sink, therefore I am."



Creative Commons License



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions



Connect with us!



  •   Sign up for our educator newsletter

  •   Follow #ExploEDU

  •   Teacher Institute YouTube

  •   Teacher Institute Facebook

  •  teacherinstitute @exploratorium.edu

Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
415.528.4444

Contact Us

  • Plan Your Visit
  • Calendar
  • Buy Tickets
  • Getting Here
  • Store
  • Event Rentals
  • About Us
  • Become a Member
  • Donate
  • Jobs
  • Volunteer
  • Press Office
  • Land Acknowledgment

Get at-home activities and learning tools delivered straight to your inbox

The Exploratorium is a 501(c)(3) nonprofit organization. Our tax ID #: 94-1696494
© 2023 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |