• Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
  • Visit
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • Online
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free + Community Events
      • Fundraising Events
      • Kids + Families
      • Members
      • Special Hours
      • Private Event Closures
    • Prices
    • Hours
    • Getting Here
    • Museum Map
    • Free Admission and Reduced Admission
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing & Reflections
        • Curator Statement
      • Gordon and Betty Moore Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Admission and Tickets
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Event Rentals
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • Moore East Gallery
      • Bechtel Central Gallery & Outdoor Gallery
      • Osher West Gallery
      • Kanbar Forum

      • Weddings
      • Proms and School Events
      • Daytime Meetings, Events, & Filmings

      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Groups / Tour Operators
      • Group Visit Request Form
    • Exploratorium Store
    • Contact Us
  • Education
    • Black Teachers and Students Matter
    • Professional Development Programs
      • Free Educator Workshops
      • Professional Learning Partnerships
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Watch and Do Science
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
      • Cambio
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Recursos gratuitos para aprender ciencias
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
        • Spectrum
          • Arts
          • Behind the Scenes
          • News
          • Education
          • Community & Collaborations
          • Science
        • Eclipse
        • Studio for Public Spaces
        • Tangents
        • Resonance See & Hear Blog
        • Fabricated Realities
        • Tinkering Studio: Sketchpad
        • Exploratorium on Tumblr
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Our Story
    • Land Acknowledgment
    • Explore Our Reach
    • Impact Report
    • Awards
    • Our History
      • 50 Years 1969–2019

    • Senior Leadership
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists

    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
    • Teacher Institute
    • Institute for Inquiry
    • Explainer Programs
    • Studio for Public Spaces
    • Exhibit Making
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows

    • Job Opportunities
    • Become a Volunteer

    • Contact Info
    • Newsletter
    • Educator Newsletter
    • Blogs
    • Follow & Share
    • Press Office

    • FY21 Audit Report
    • 990 FY20 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate Today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join Our Donor Community
    • Engage Your Business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a Fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Volunteer
      • How to Apply
      • Application for Internships
      • Our Contract
      • Application for Individuals
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store

Masks and vaccinations are recommended. Plan your visit  

Visitor FAQ Buy Tickets Donate Today
Exploratorium
Exploratorium
  • Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
Science Snacks
Science activity using a balancing ball to demonstrate the Bernoulli principle
Science activity using a balancing ball to demonstrate the Bernoulli principle
  • Science activity using a balancing ball to demonstrate the Bernoulli principle
  • Science activity using a balancing ball to demonstrate the Bernoulli principle

Balancing Ball

Suspend a ball in a stream of air.

A ball stably levitated on an invisible stream of air is a dramatic sight. Try to pull the ball out of the air stream—you can feel a force pulling it back in. You can also feel that the air stream is being deflected by the ball. This activity shows the force that gives airplanes lift.


Grade Bands: 
K-2
3-5
6-8
9-12
Subject: 
Physics
Mechanics
Keywords: 
exhibit-based
levitation
balance
Newton's laws
NGSS and EP&Cs: 
PS
PS1
PS2
CCCs
Cause and Effect
Systems and System Models
Structure and Function
Stability and Change

  • Facebook logo
  • Reddit logo
  • Twitter logo


Tools and Materials

Small version:

  • Hair dryer (blower)
  • A spherical balloon or table-tennis ball
  • Tissue paper
  • Optional: A stand for the blower; a partner

Large version:

  • Vacuum cleaner such as a Shop-Vac, which has a reversible hose so it can be used as blower
  • A lightweight vinyl beach ball
  • Tissue paper
  • Optional: A stand for the vacuum cleaner hose; a partner

Assembly

None needed. 

Note, though, that depending on the blower you choose, some experimentation may be necessary to find a satisfactory ball. You might want a partner to help you, or you can devise some sort of stand for the blower. That way, your hands will be free to experiment with the ball in the air stream.


To Do and Notice

Blow a stream of air straight up. Carefully balance the ball above the air stream. Pull it slowly out of the flow. Notice that when only half the ball is out of the air stream, you can feel it being sucked back in. Let go of the ball and notice that it oscillates back and forth and then settles down near the center of the air stream.

With one hand, pull the ball partially out of the air stream. With the other hand, dangle a piece of tissue paper and search for the air stream above the ball. Notice that the ball deflects the air stream outward. In the large version of this Snack, you can actually feel the deflected air stream hit your hand.

Tilt the air stream to one side and notice that the ball can still be suspended.

Balance the ball in the air stream and then move the blower and the ball toward a wall (try the corner of a room). Notice the great increase in the height of the suspended ball.


What’s Going On?

When the ball is suspended in the air stream, the air flowing upward hits the bottom of the ball and slows down, generating a region of higher pressure. The high-pressure region of air under the ball holds the ball up against the pull of gravity.

When you pull the ball partially out of the air stream, the air flows around the curve of the ball that is nearest the center of the air stream. Air rushes in an arc around the top of the ball and then continues outward above the ball.

This outward-flowing air exerts an inward force on the ball, just like the downward flow of air beneath a helicopter exerts an upward force on the blades of the helicopter. This explanation is based on Newton’s law of action and reaction.

Another way of looking at this is that as the air arcs around the ball, the air pressure on the ball decreases, allowing the normal atmospheric pressure of the calm air on the other side of the ball to push the ball back into the air stream.

People immediately raise several questions when they hear the second explanation: Why does air flowing over a surface in an arc exert less pressure on that surface? To answer this question, consider a rider on a roller-coaster car going over the top of a hill at high speed. The force the rider exerts on the seat decreases as the car goes over the top of the hill. In the same way, the air that arcs around the side of the ball exerts less force on the ball.

Why does air follow the surface of the sphere? Consider what would happen if the air did not curve around the ball. An “air shadow” would be formed above the ball. This air shadow would be a region of low pressure. The air would then flow into the low-pressure air shadow. So the air flows around the ball.

An alternative explanation is provided by the Bernoulli principle. If you pull the ball far enough out of the air stream, then the air flows over only one side of the ball. In fact, the air stream speeds up as it flows around the ball. This is because the middle of the ball sticks farther into the air stream than the top or bottom. Since the same amount of air must flow past all parts of the ball each second, it must flow faster where it is pinched together at the middle. The Bernoulli principle states that where air speeds up, its pressure drops. The difference in pressure between the still air and the moving air pushes the ball back into the center of the air stream.

When you approach a wall with the balanced ball, the high-pressure region under the ball becomes a region of even higher pressure. The air that hits the bottom of the ball can no longer expand outward in the direction of the wall, so it drives the ball to a greater height.


Going Further

This activity illustrates one of the reasons why airplanes fly. A flat wing will fly if it is tipped into the wind, so that it forces air downward. Newton’s third law tells us that for every action there must be an equal and opposite reaction: The reaction to the downward force of the wing on the air is the upward force of the air on the wing. You can feel this lifting force if you hold your hand out the window of a moving car and tip your hand so that it forces the air downward.

A wing that is curved on top will deflect air downward and produce lift even if it isn’t tipped. The explanation for this is essentially the same as the one given in this Snack. The wing collides with air, creating a region of high pressure in front of the wing. This high pressure produces drag, which is always associated with lift. The high-pressure air in front of the wing accelerates air over the curved surface of the wing. This air then flows downward behind the wing. Airplanes fly because their wings throw air downward.

It is sometimes said that air must flow faster over the curved top surface of a wing than over the flat bottom. This is said to happen because the air has to meet up again at the far end of the wing, and since the air traveling over the curved path must travel farther, it must travel faster. This is not true. Two parcels of air that start together, then split to flow over different sides of a wing, do not, as a rule, rejoin at the far end of the wing.


Resources

Check out this episode of Build Your Own Exploratorium to see this Snack in action.



Related Snacks

Science activity demonstrating the Bernoulli principle
Bernoulli Levitator

Suspend an object in the air by blowing down on it.

Science activity demonstrating balance and the center of gravity
Balancing Stick

Does it matter which end is up?

Science activity to make a parachute out of simple materials
Parachute Plummet

Launch parachutes to see how they fall.



Creative Commons License



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions



Connect with us!



  •   Sign up for our educator newsletter

  •   Follow #ExploEDU

  •   Teacher Institute YouTube

  •   Teacher Institute Facebook

  •  teacherinstitute @exploratorium.edu

Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
415.528.4444

Contact Us

  • Plan Your Visit
  • Calendar
  • Buy Tickets
  • Getting Here
  • Store
  • Event Rentals
  • About Us
  • Become a Member
  • Donate
  • Jobs
  • Volunteer
  • Press Office
  • Land Acknowledgment

Get at-home activities and learning tools delivered straight to your inbox

The Exploratorium is a 501(c)(3) nonprofit organization. Our tax ID #: 94-1696494
© 2023 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |