• Visit
    • Buy Tickets
    • Calendar
    • After Dark Thursdays
    • Exhibits
    • Artworks on View
    • Getting Here
    • Event Rentals
  • Education
    • Professional Development Programs
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate today!
    • Membership
    • Join our donor community
    • Engage your business
    • Attend a fundraiser
    • Explore our reach
    • Thank you to our supporters
    • Host your event
    • Volunteer
  • Store
  • Visit
    • Buy Tickets
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free and Community Events
      • Fundraising Events
      • Kids + Families
      • Live Webcasts
      • Members
      • Ongoing + Series
      • Special Hours and Open Mondays
      • Private Event Closures
    • Hours
    • Getting Here
    • Museum Map
    • Reduced Rates & Community Day
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Exhibition: Science of Sharing
          • Educator Activities
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing and Listening
        • Curator Statement
      • Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
      • PlayLists
        • All PlayLists
        • A Different Light
        • “We” or “Just Me”?
        • See Yourself in Cells
        • Greatest Hits: Gallery 2
        • Greatest Hits: Gallery 3
        • Greatest Hits: Gallery 4
        • Museum Map
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Prices and Discounts
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Groups / Tour Operators
      • Group Visit Request Form
    • Event Rentals
      • COVID-Compliant Options
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • East Gallery
      • Bechtel Central Gallery
      • Osher West Gallery
      • Kanbar Forum
      • Weddings
      • Proms and School Events
      • Daytime Meeting & Event Options
      • Happy Hour on the Water
      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Exploratorium Store
    • Contact Us
    • Español
    • 繁體中文
    • 简体中文
    • 한국어
    • Français
    • Deutsch
    • Português
    • 日本語
  • Education
    • Professional Development Programs
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Contact Info
    • Our Story
    • Our History
      • 50 Years 1969–2019
    • Fact Sheet
    • Impact Report
    • Awards
    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
      • Arts Committee and Advisers
    • Newsletter
    • Educator Newsletter
    • Press Office
    • Senior Leadership
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows
    • Exhibit Making
    • Institute for Inquiry
    • Teacher Institute
    • Online Engagement
    • Explainer Programs
    • Studio for Public Spaces
    • Job Opportunities
    • Become a Volunteer
    • Follow & Share
    • FY20 Audit Report
    • 990 FY19 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join our donor community
    • Engage your business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore our reach
    • Thank you to our supporters
    • Volunteer
      • Benefits
      • How to Apply
      • Application for Corporate Groups
      • Application for Internships
      • Application for Professional Societies
      • Application for School Groups & Clubs
      • Our Contract
      • Application for Individuals
      • Opportunities
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Fact Sheet
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store
 

Learn with us online while the Exploratorium is temporarily closed. You can help us reopen—donate today.

Exploratorium
Exploratorium
  • Visit
    • Buy Tickets
    • Calendar
    • After Dark Thursdays
    • Exhibits
    • Artworks on View
    • Getting Here
    • Event Rentals
  • Education
    • Professional Development Programs
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate today!
    • Membership
    • Join our donor community
    • Engage your business
    • Attend a fundraiser
    • Explore our reach
    • Thank you to our supporters
    • Host your event
    • Volunteer
  • Store
Science Snacks
Science activity that demonstrates wave interference

On the Fringe (formerly Bridge Light)

Air trapped between two pieces of clear plastic produces rainbow-colored interference patterns.

When light hits two slightly separated transparent surfaces, part of the light will be reflected from each surface. If the distance between the surfaces is a multiple of half the wavelength of any one color of light, destructive and constructive interference will occur, producing an interference pattern.


Grade Bands: 
6-8
9-12
Subject: 
Perception
Light, Color & Seeing
Physics
Light
Waves
Keywords: 
exhibit-based
interference
color
wavelength
NGSS and EP&Cs: 
PS
PS4
CCCs
Patterns
Cause and Effect
Scale, Proportion, and Quantity

  • Facebook logo
  • Reddit logo
  • Twitter logo


Tools and Materials

  • Two sheets of 1/8-inch (3 mm) clear plastic with smooth flat surfaces (no bumps or ridges, no burrs around the edges, not a lot of scratches, etc.), approximately 8 inches (20 cm) square (exact size is not critical)
  • Dark construction paper about the same size as the plastic
  • A bright light source, such as a desk lamp, bright overhead light or sunny window
  • A piece of transparent red plastic (not pictured) of any size (anything between 3 x 5 inches (8 x 13 cm) to 6 x 6 inches (15 x 15 cm) will work)
  • Optional: tape

Assembly

  1. Clean the top and bottom surfaces of the plastic with window cleaner, alcohol, or soapy water and dry thoroughly. Avoid scratching or smudging the surfaces.
  2. Press the plastic pieces tightly together while holding the piece of dark construction paper under the bottom piece. NOTE: for convenience, you may want to tape the plastic pieces together and tape the construction paper in place. But do not put tape or anything else between the plastic pieces—the inside surfaces should press together as flatly as possible.

To Do and Notice

Hold the sandwiched plastic, with the dark piece of paper away from you, up to any strong source of white light. Observe the rainbow-colored interference patterns. The patterns will change as you bend, twist, or press on the plastic pieces. Notice that the patterns strongly resemble the contour lines on a topographic map.

Place the red plastic between the light source and the pieces of plastic. Notice that the patterns are now just red and black.


What’s Going On?

Light waves reflect from the surfaces of two plastic sheets separated by a thin air gap. These light waves meet after reflecting from the two surfaces. When two waves meet, they can add together, cancel each other, or partially cancel each other. This adding and canceling of light waves—called constructive interference and destructive interference—creates the rainbow-colored patterns you see.

White light is made up of all different colors mixed together. When light waves of a particular color meet and cancel each other, that color is subtracted from white light. For example, if the blue light waves cancel, you see what is left of white light after the blue has been removed, which is yellow, the complementary color of blue.

When you place a red filter in front of the light source, only red and black fringes will appear. Where destructive interference takes place, there is no red light left to reach your eyes, so you see black. Where the red light waves constructively interfere, you see red.

The thickness of the gap between the plates determines which colors of light cancel out at any one point. For example, if the separation of the plates is roughly equal to one-half the wavelength of blue light (or some multiple of it), the crests of waves of blue light reflected from the top surface of the air gap will match up with the troughs of waves reflected from the bottom surface, causing the blue light to cancel out.

This is what happens: Imagine that the distance between the two plates is one-half the wavelength of blue light. When a wave hits the top of the air layer, part reflects and part continues on. Compared to the part that reflects from the top of the air layer, the part that continues on and reflects from the bottom travels an extra wavelength through the air layer (half a wavelength down and half a wavelength back). In addition, the wave that reflects from the bottom is inverted. The net effect is that the blue light waves reflected from the two surfaces recombine trough-to-peak and cancel each other out. (See diagram; click to enlarge.)

Because the interference pattern depends on the amount of separation between the plates, what you’re actually seeing is a topographical map of the distance between plates.


Going Further

When you open a package of new, clean microscope slides, you can often see colored interference patterns created by the thin air space between the glass slides.

The beautiful rainbow colors you see in soap bubbles and on pieces of metal heated to high temperatures are produced in the same way: by light reflecting from the top and bottom of a thin transparent layer.



Related Snacks

Science activity that models light wave interference
Soap Film Interference Model

Model the behavior of light reflecting off soap film surfaces.

Science activity that demonstrates light interference in soap
Soap Film on a Can

Why do we see colors in soap bubbles?

Science activity that explores how waves travel and interact
Anti-Sound Spring

Send waves down a spring to watch them travel and interact.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions

Connect with us!

  •   Sign up for our educator newsletter
  •   Follow #ExploEDU
  •   Teacher Institute YouTube
  •   Teacher Institute Facebook
  •  teacherinstitute @exploratorium.edu
Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
(415) 528-4444

Contact Us

  • Plan Your Visit
  • Buy Tickets
  • Hours
  • Getting Here
  • Calendar
  • Tactile Dome
  • Store
  • About Us
  • Become a Member
  • Donate
  • Event Rentals
  • Jobs
  • Volunteer
  • Press Office

Get at-home activities and learning tools delivered straight to your inbox

© 2020 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |