• Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
  • Visit
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • Online
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free + Community Events
      • Fundraising Events
      • Kids + Families
      • Members
      • Special Hours
      • Private Event Closures
    • Prices
    • Hours
    • Getting Here
    • Museum Map
    • Free Admission and Reduced Admission
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing & Reflections
        • Curator Statement
      • Gordon and Betty Moore Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Admission and Tickets
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Event Rentals
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • Moore East Gallery
      • Bechtel Central Gallery & Outdoor Gallery
      • Osher West Gallery
      • Kanbar Forum

      • Weddings
      • Proms and School Events
      • Daytime Meetings, Events, & Filmings
      • Happy Hour on the Water

      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Groups / Tour Operators
      • Group Visit Request Form
    • Exploratorium Store
    • Contact Us
  • Education
    • Black Teachers and Students Matter
    • Professional Development Programs
      • Free Educator Workshops
      • Professional Learning Partnerships
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Watch and Do Science
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
      • Cambio
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Recursos gratuitos para aprender ciencias
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
        • Spectrum
          • Arts
          • Behind the Scenes
          • News
          • Education
          • Community & Collaborations
          • Science
        • Eclipse
        • Studio for Public Spaces
        • Tangents
        • Resonance See & Hear Blog
        • Fabricated Realities
        • Tinkering Studio: Sketchpad
        • Exploratorium on Tumblr
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Our Story
    • Land Acknowledgment
    • Explore Our Reach
    • Impact Report
    • Awards
    • Our History
      • 50 Years 1969–2019

    • Leadership Cabinet
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists

    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
    • Teacher Institute
    • Institute for Inquiry
    • Explainer Programs
    • Studio for Public Spaces
    • Exhibit Making
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows

    • Job Opportunities
    • Become a Volunteer

    • Contact Info
    • Newsletter
    • Educator Newsletter
    • Blogs
    • Follow & Share
    • Press Office

    • FY21 Audit Report
    • 990 FY20 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate Today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join Our Donor Community
    • Engage Your Business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a Fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Volunteer
      • How to Apply
      • Application for Internships
      • Our Contract
      • Application for Individuals
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store

Masks and vaccinations are recommended. Plan your visit  

Visitor FAQ Buy Tickets Donate Today
Exploratorium
Exploratorium
  • Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
Science Snacks
Science activity that demonstrates a solar cell transforming light into electricity

Output of a Solar Cell

Measure the efficiency of solar cells as they convert sunlight to power.

Solar cells convert light energy into electrical energy. With a few simple tools on a sunny day (or working indoors under a light source), you can measure how efficient a solar cell is at transforming sunlight into electricity.


Grade Bands: 
9-12
Subject: 
Data
Data Collection & Analysis
Engineering & Technology
Real-World Problems & Solutions
Physics
Energy
Light
Keywords: 
sun
alternative energy
circuit
series
parallel
video
NGSS and EP&Cs: 
PS
PS2
PS3
CCCs
Cause and Effect
Scale, Proportion, and Quantity
Energy And Matter

  • Facebook logo
  • Reddit logo
  • Twitter logo


Video Demonstration


Tools and Materials

  • Solar cell
  • Multimeter to measure volts (1–10 volts) and amps (0.01–10 amps)
  • Five alligator clip leads: two red, two black, one another color
  • Sunlight or other strong light source, such as a 100-watt incandescent bulb in a gooseneck lamp
  • Small DC electric motor that will run on 0.5 volts
  • Masking tape
  • Metric ruler or meter stick
  • Optional: second solar cell, second multimeter

Assembly

None needed.


To Do and Notice

Investigation 1

Working outside, in a sunny place (or indoors, under a 100-watt incandescent bulb), set the multimeter to the DC voltage scale so it can measure a few volts. Using the red clip lead, connect the positive terminal of the meter to the positive terminal of the solar cell. Then use the black clip lead to connect the common (COM) terminal of the meter to the negative terminal of the solar cell (see photos below).

Measure the open circuit voltage (Voc) across the solar cell. This is the voltage when no current is flowing through the cell. Since no current flows through a perfect voltmeter, a voltmeter measures the open circuit’s voltage.

Tilt the solar cell in sunlight or lamplight and notice how the Voc changes. The solar cell measured for the setup shown below, for example, had a Voc = 1.2 volts in full sunlight.

Investigation 2

Flip over the solar cell (see photo below), and watch what happens to the meter reading. In our setup, the reading of 0.16 volts shows what happens when almost no light reaches the collectors.

Investigation 3

Flip the solar cell face-up again so the light hits it directly, and set the meter to “DC amperes” on a scale that will measure a few amperes of electrical current. Use a red clip lead to connect the positive terminal of the meter to the positive terminal of the solar cell. Then, use a black clip lead to connect the common (COM) terminal of the meter to the negative terminal of the solar cell. (Note that there may be a separate terminal for measuring amperes. If that’s the case, you’ll need to move the input lead to that terminal.)

The maximum current that a solar cell can produce occurs when a wire is connected across the terminals. This is called the short-circuit current, or Isc. Like a wire, an ammeter has very low resistance, so will register a measurement similar to a short circuit.

Note the Isc through the solar cell. In our setup, the solar cell measured Isc = 0.48 amps in full sunlight (your results may vary).

Try tilting the solar cell. How does the current change?

In the image below, we again show the connections on the back of the solar cell.

Investigation 4

To investigate a solar-powered motor, put a piece of masking tape on the shaft of the electric motor so it creates a tiny flag (see photo below). Make sure the motor still spins freely with the masking tape in place.

Connect the two terminals of the solar cell to the two terminals of the electric motor. (The photos below show the front and back of the solar cell so you can see the connections.) Flip the solar cell face-up and notice how the motor shaft spins when it’s in the sun. Tilt the solar cell to maximize motor speed, and then tilt it away from its maximum orientation. (Be careful not to shade the solar cell as you hold it.) Notice that the motor speed is greatest when the solar cell is oriented perpendicular to a line from the sun to the solar cell.

Measure the voltage across the motor as it runs at maximum speed by connecting the meter as you did in Investigation 1 while leaving the motor connected. This array of connections is called a parallel circuit (see photo below).

Then set the multimeter to measure current, and connect it in a single loop with the motor and solar cell (see photo below). This arrangement is referred to as having the meter in series. In our experiment, the solar cell and motor had V = 1.1 volts and I = 0.11 amps.

Calculating the power of a solar cell

The power of a solar cell is the product of the voltage across the solar cell times the current through the solar cell. Here’s how to calculate the power the solar cell delivers to the motor:

The maximum theoretical power from our solar cell, Pmax, is the product of the Voc and Isc.

Pmax = Voc * Isc = 1.2V * 0.48A = 0.58W

The actual power, Pactual, delivered by the solar cell to the motor, in practice, is equal to the voltage across the motor, V, times the current through the motor, I.

P = V * I

For the solar cell and motor we used, the electrical power delivered to the motor was

P = 1.1V * 0.11A = 0.12W

Calculate the solar cell’s efficiency

The efficiency of the solar cell is the electrical power out divided by the solar power in. You can use the estimate for the maximum theoretical power to calculate the maximum theoretical efficiency, E, of the solar cell.

Here’s how to calculate the efficiency of the solar cell using the sun:

First, calculate the solar power arriving at the solar cell by multiplying the intensity of the sun by the area of the solar cell. The solar intensity from the sun, Si, over a given area at the surface of the earth is approximately 1,000 watts/m2.

Use a ruler to measure the active area, A, of your solar cell (see photo below).

The cell in this experiment measured 5 cm by 5 cm.

A = 5cm * 5cm = 25cm2 = 0.0025m2

The solar power, Ps, intercepted by a cell this size is

Ps = Si * A = 1,000W/m2 * 0.0025m2 = 2.5W

The maximum theoretical efficiency, E, of the solar cell is estimated to be

E = Pmax / Ps = 0.58W / 2.5W = 23%

The actual efficiency of the solar cell when providing power to the motor was

E = Pactual / Ps = 0.12W / 2.5W = 4.8%


What's Going On?

Solar cells transfer energy from the photons in sunlight to the electrons in the solar cell. The more photons of sunlight absorbed by the solar cell, the greater the electric current. That’s why the short-circuit current depends so strongly on the orientation of the solar cell. The maximum voltage, on the other hand, is fixed by the material the solar cell is made of. Solar cells also have an internal resistance, which reduces the voltage available at the terminals when current flows.

Electric power is the product of the voltage across a device and the current through that device. Engineers use the theoretical power to characterize a solar cell. The power provided by the sun per unit area, known as solar intensity, is approximately 1,000 Watts per meter squared. This value is reduced by clouds, haze, and when the radiation from the sun has to travel a longer path through the atmosphere (such as at sunset or sunrise). However, it is a good approximation around midday with a clear sky.

The solar cell has energy losses, so does not covert 100% of the solar power to electricity. Some of the light is reflected from the surface of the solar cell, and some of the light is blocked by the metal lines on top of the solar cell that conduct electricity through the cell. To make a solar cell more efficient, the manufacturers reduce reflected light and minimize cell shading by keeping the area of metal conductors small. Energy is also lost if the energy of the photon is higher than what the solar cell can accept.

To determine how well a solar cell really works, it is important to measure the efficiency with which a solar cell converts the power of sunlight into electric power. There are additional losses when you attach a load to the solar cell. In this Snack, you measured the actual power delivered to a motor, and calculated how the efficiency changed when a load was attached.


Going Further

An important engineering challenge is to try to maximize the power delivered to the motor using solar power. One way to do this is to combine two solar cells in series or in parallel to see if one combination provides more efficient power conversion than the other (see photos below for ideas). If you have two multimeters, you can set up one to measure current and one to measure voltage.



Related Snacks

Science activity that demonstrates the brightness of two light sources
Oil Spot Photometer

Compare the brightness of two light sources with an oil spot on a white card.

Science activity that demonstrates Einstein's photoelectric effect
Photoelectricity

Get electricity from light.

Science activity that explores series and parallel circuits
Circuit Workbench

Learn about simple circuits with a board you build yourself.



Creative Commons License



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions



Connect with us!



  •   Sign up for our educator newsletter

  •   Follow #ExploEDU

  •   Teacher Institute YouTube

  •   Teacher Institute Facebook

  •  teacherinstitute @exploratorium.edu

Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
415.528.4444

Contact Us

  • Plan Your Visit
  • Calendar
  • Buy Tickets
  • Getting Here
  • Store
  • Event Rentals
  • About Us
  • Become a Member
  • Donate
  • Jobs
  • Volunteer
  • Press Office
  • Land Acknowledgment

Get at-home activities and learning tools delivered straight to your inbox

The Exploratorium is a 501(c)(3) nonprofit organization. Our tax ID #: 94-1696494
© 2023 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |