• Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
  • Visit
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • Online
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free + Community Events
      • Fundraising Events
      • Kids + Families
      • Members
      • Special Hours
      • Private Event Closures
    • Prices
    • Hours
    • Getting Here
    • Museum Map
    • Free Admission and Reduced Admission
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing & Reflections
        • Curator Statement
      • Gordon and Betty Moore Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Admission and Tickets
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Event Rentals
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • Moore East Gallery
      • Bechtel Central Gallery & Outdoor Gallery
      • Osher West Gallery
      • Kanbar Forum

      • Weddings
      • Proms and School Events
      • Daytime Meetings, Events, & Filmings
      • Happy Hour on the Water

      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Groups / Tour Operators
      • Group Visit Request Form
    • Exploratorium Store
    • Contact Us
  • Education
    • Black Teachers and Students Matter
    • Professional Development Programs
      • Free Educator Workshops
      • Professional Learning Partnerships
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Watch and Do Science
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
      • Cambio
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Recursos gratuitos para aprender ciencias
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
        • Spectrum
          • Arts
          • Behind the Scenes
          • News
          • Education
          • Community & Collaborations
          • Science
        • Eclipse
        • Studio for Public Spaces
        • Tangents
        • Resonance See & Hear Blog
        • Fabricated Realities
        • Tinkering Studio: Sketchpad
        • Exploratorium on Tumblr
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Our Story
    • Land Acknowledgment
    • Explore Our Reach
    • Impact Report
    • Awards
    • Our History
      • 50 Years 1969–2019

    • Leadership Cabinet
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists

    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
    • Teacher Institute
    • Institute for Inquiry
    • Explainer Programs
    • Studio for Public Spaces
    • Exhibit Making
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows

    • Job Opportunities
    • Become a Volunteer

    • Contact Info
    • Newsletter
    • Educator Newsletter
    • Blogs
    • Follow & Share
    • Press Office

    • FY21 Audit Report
    • 990 FY20 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate Today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join Our Donor Community
    • Engage Your Business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a Fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Volunteer
      • How to Apply
      • Application for Internships
      • Our Contract
      • Application for Individuals
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store

Masks and vaccinations are recommended. Plan your visit  

Visitor FAQ Buy Tickets Donate Today
Exploratorium
Exploratorium
  • Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
Science Snacks
Science activity that explores how graphing can reveal patterns in data
Science activity that explores how graphing can reveal patterns in data
Science activity that explores how graphing can reveal patterns in data
  • Science activity that explores how graphing can reveal patterns in data
  • Science activity that explores how graphing can reveal patterns in data
  • Science activity that explores how graphing can reveal patterns in data

Plot the Dot

Graphing can be a slippery slope to understanding.

Scientists develop their descriptions of the world by collecting data. Graphs can reveal patterns that lead to a deeper understanding of phenomena. In this Snack, data collected from ordinary objects reveals a constant in nature.


Grade Bands: 
6-8
9-12
Subject: 
Chemistry
Materials & Matter
Data
Visualization
Data Collection & Analysis
Mathematics
Nature of Science
Measurement
Physics
Keywords: 
density
graph
water
constant
NGSS and EP&Cs: 
PS
PS1
ETS
ETS1
CCCs
Patterns
Cause and Effect
Scale, Proportion, and Quantity

  • Facebook logo
  • Reddit logo
  • Twitter logo


Tools and Materials

  • Glass marbles
  • Small pieces of wood
  • Steel washers or nuts
  • Small pieces of PVC
  • 24 quart-size (liter-size) sealable plastic bags
  • Digital balance
  • Marker
  • Assortment of graduated cylinders or measuring cups (Note that the volumes of the bagged samples will be determined by water displacement, so the containers must be big enough to hold the samples in each bag, plus some water)
  • Water
  • Pencil or skewer
  • Paper towels
  • Large piece of graph paper for plotting data
  • Ruler or straight-edge
  • Six sets of 3/4-inch-diameter circular labels in four different colors
  • Optional: one additional set of 3/4-inch-diameter circular labels in a fifth color

Assembly

  1. Place different amounts of marbles in six separate plastic bags. The exact number of marbles in each bag isn’t critical, but they should all be different, and the total mass should not exceed 250 grams in any one bag. Use a marker to number the bags 1 through 6 so you can keep track of the samples.
  2. Do the same for the wood, washers, and PVC, creating six bags of each type of material, and each with different amounts of a single sample. Continue numbering the bags, from 7 on. When you’re done, you should have 24 numbered bags containing different amounts of different materials: glass, wood, steel, and PVC.


To Do and Notice

Record your data

Make a table to record the mass and volume of the contents in each of the 24 bags.

Find the mass of each sample

Use the digital balance to find the mass (in grams) of the contents in each bag. To do this, you can find the mass of the entire bag and then subtract the mass of the plastic bag (assume it’s 5 grams), or you may use a more refined technique if you wish. Record the results in your table.

Find the volume of each sample

Use a method called water displacement to find the volume (in milliliters) of each bag’s contents. Partially fill a graduated cylinder with a known amount of water. Take the objects out of one bag, place them in the water, and note the new volume in the graduated cylinder. The difference is the volume of the objects you added in. Note the results in your table, blot the objects dry with paper towels, and then return them to their plastic bag. Move on to the next bag until you’ve found the volume of all 24 samples.

As you work, be sure the objects are completely submerged. If there’s not enough water, start over with more. If an object floats, gently push it down with a pencil or skewer until it’s just below the surface. Try not to push the pencil into the water too far—you don’t want to add its volume!

Create a graph of the results

Set up a graph on a large piece of paper with mass along the y-axis and volume along the x-axis. Scale the axes so the largest masses and volumes you measured will fit on the graph.

Assign a label color to each material (such as red for glass, blue for steel, yellow for PVC, green for wood), and stick a label at the appropriate mass-volume coordinates on the large graph for each of your samples. Do you notice a pattern in the data?

Use a ruler or straightedge to draw the best straight line through the dots that represent each of the four materials on the graph. Use 0,0 as the starting point of each line (when mass is zero, volume is zero).


What’s Going On?

In this Snack, you’re working with objects made of four different materials: glass, steel, wood, and PVC. The properties measured here—mass and volume—are examples of extrinsic properties, since they aren’t specific to a given material, but instead depend on other factors. Here, mass and volume both change depending on the quantity of the material. That means each sample bag has a different place on the mass-volume graph since they all contain different amounts of different materials.

The purpose of collecting data is to help us understand the world in a systematic way. Graphing is a valuable way to organize data since it can often help you determine a pattern. You may have noticed the pattern that appeared in your graph when you used colored dots to represent different materials. Even though each bag had a different number of objects in it, the dots for each material should have lined up. (Click to enlarge the sample graph below.)

The fact that a line appeared means there is something constant about the material. This constant can be found by determining the slope of the line you drew through the points. The slope represents the increase in mass for a given increase in volume. The fact that this is constant means that it is an intrinsic property of the material—something that doesn’t change, regardless of the quantity of the material. This property, represented by the ratio of the mass of an object to its volume, is so important that it has a special name: density. Your data shows that the density of a specific material at a given temperature is constant.


Going Further

Find the mass of six different volumes of water, with the largest volume not exceeding 200 mL. Plot these values onto the graph with dots of a new, fifth color, and draw a best-fit line through the dots. What do you notice?

The density of water at room temperature is 1 g/mL, so the best-fit line should be close to the line y = x. Objects that sink in water (such as steel, glass, and PVC) have larger densities, and their data should have greater slopes than the water-sample line. Objects that float (such as wood) have smaller densities, and the slopes of their data will be less than the water-sample line.


Teaching Tips

This Snack is a powerful way to show students why we graph. Rather than teaching density by starting with an equation, we recommend having students realize that density is a property they can discover by collecting and graphing data.

In a large class, have small groups of students take the data for a single sample of each material. You can easily increase the number of samples to get students into smaller groups. Combine this data on a large graph that represents the class data so students can see how their data fit together. Having students put the number of the bag on their sample dot can help keep track of which dot represents which group.



Related Snacks

Science activity that demonstrates differences in density
Klutz-Proof Density Column

This density column always returns to its original three layers.

Science activity measuring density of a liquid
Eyedropper Hydrometer

Construct a simple hydrometer to compare the densities of solutions.

Science activity that uses data to explore natural cycles and unnatural changes in our atmosphere
Our Changing Atmosphere

Explore a famous environmental data set to learn about climate change.



Creative Commons License



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions



Connect with us!



  •   Sign up for our educator newsletter

  •   Follow #ExploEDU

  •   Teacher Institute YouTube

  •   Teacher Institute Facebook

  •  teacherinstitute @exploratorium.edu

Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
415.528.4444

Contact Us

  • Plan Your Visit
  • Calendar
  • Buy Tickets
  • Getting Here
  • Store
  • Event Rentals
  • About Us
  • Become a Member
  • Donate
  • Jobs
  • Volunteer
  • Press Office
  • Land Acknowledgment

Get at-home activities and learning tools delivered straight to your inbox

The Exploratorium is a 501(c)(3) nonprofit organization. Our tax ID #: 94-1696494
© 2023 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |