Masks and vaccinations are recommended. Plan your visit
Compress layers of sediments in an easy-to-build deformation chamber to see folds, faults, and other geologic features develop in real time.
Note that these measurements can be changed. Larger or smaller Squeeze Boxes can be created and customized for your needs.
Pull back the rammer to the end of the box. Pour in alternate layers of sand and other granular material (salt, flour, etc.). Make sure the layers are flat by gently tamping them down as you go (see photos below).
Create at least three layers. The non-sand layer(s) can be thinner than the sand layers, but be sure all the layers are thick enough to see clearly through the window (see photo below). To avoid spillovers, make sure your layers fill no more than half the height of the container.
When your layers are in place, it’s time to give them a squeeze. Gently and slowly push in the Squeeze Box rammer and watch what happens (click to enlarge the GIF below).
Your Squeeze Box replicates geologic structures found in areas that have undergone or are undergoing compressional forces, such as regions near convergent plate boundaries.
In these geologic settings, material responds to compression in a number of interesting ways, all of which you can see in your Squeeze Box.
Faults occur when layers rupture and become displaced. Breaks in your lines of sediment are evidence of faulting (click to enlarge the photo below).
The faults you create with your Squeeze Box are most likely reverse or thrust faults. These are faults in which one block of material is shoved, or pushed over an adjacent block of material.
Folds occur when compressed layers bend. Look for synclines and anticlines: Synclines are folds that curve downward, as in the letter U, and anticlines are folds that curve upward, as in the letter A. Typically, you’ll see wavy patterns of anticlines alternating with synclines, much like a rug that has been bunched up on the floor. Synclines and anticlines can be millimeters to kilometers wide. The photo below shows an anticline.
The deformation you see in your Squeeze Box is an excellent model of what happened or is currently happening around the world due to tectonic forces. Mountain building (geologist say orogenesis) is happening in the Himalayas due to the collision of two massive continents. The Alps, Atlas, Appalachian and Rocky Mountains are all the result of compressional forces at work, uplifting mountain high into the sky. The west coast of North America as well as all around the the Pacific (the Ring of Fire) shows how compressional tectonics can plow up the ocean floor and smash land onto the edge of continents (this process is called accretion).
After you compress your layers, pull back the rammer and you might see normal faults develop as the layers collapse into the expanded space. Look for layers that rupture and slide downward.
If you retract the rammer and squeeze again, you may be able to create folds that double over onto themselves, called overturned or recumbent faults.
One way geologists gain information about rock layers is with core samples. Try taking a core sample from your Squeeze Box by pressing a clear plastic drinking straw into the layers.
Note: Some granular materials work better than others for this coring activity. Try a variety of materials and see what works for you.
This Science Snack is part of a collection that showcases LGBT artists, scientists, inventors and thinkers whose work aids or expands our understanding of the phenomena explored in each Snack.
Dr. Aron Meltzner (he/him) is a gay assistant professor and geologist at the Asian School of the Environment and Earth Observatory of Singapore at Nanyang Technological University. He earned a PhD in geology from the California Institute of Technology in 2010. Dr. Meltzner’s work bridges earthquake research and sea-level science, seeking to answer questions about seismic hazard and sea-level change. You can find Dr. Meltzner digging trenches to expose sedimentary layers that have been deformed by past fault motion or snorkeling to find corals that record past sea levels. In the Squeeze Box Science Snack, you can explore how sedimentary layers change because of faulting.
Keep a bucket handy to dump your sediments into after the activity. If they get mixed up, you can use the mixed material as a layer in future squeezes. (Note: If there is an organic material in the mix, such as cornstarch or flour, acquired moisture can result in spoilage. It is best if you use that mixture within a few weeks.)
For geologists, observation is a very important process; they often draw and document formations and structures. Have students describe or illustrate what they see.
To help show compressional features, use a whiteboard marker or similar pen to draw on the side of the Squeeze Box window.
This Snack can also be used to further investigate plate tectonics, oil exploration, scientific observation, and modeling. For instance, have students take core samples to analyze the geologic structures inside a paper-covered “mystery” Squeeze Box. (See the Going Further section for instructions.) This is analogous to the drilling that geologists and energy companies do during underground exploration.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Attribution: Exploratorium Teacher Institute