• Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
  • Visit
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • Online
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free + Community Events
      • Fundraising Events
      • Kids + Families
      • Members
      • Special Hours
      • Private Event Closures
    • Prices
    • Hours
    • Getting Here
    • Museum Map
    • Free Admission and Reduced Admission
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing & Reflections
        • Curator Statement
      • Gordon and Betty Moore Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Admission and Tickets
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Event Rentals
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • Moore East Gallery
      • Bechtel Central Gallery & Outdoor Gallery
      • Osher West Gallery
      • Kanbar Forum

      • Weddings
      • Proms and School Events
      • Daytime Meetings, Events, & Filmings
      • Happy Hour on the Water

      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Groups / Tour Operators
      • Group Visit Request Form
    • Exploratorium Store
    • Contact Us
  • Education
    • Black Teachers and Students Matter
    • Professional Development Programs
      • Free Educator Workshops
      • Professional Learning Partnerships
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Watch and Do Science
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
      • Cambio
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Recursos gratuitos para aprender ciencias
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
        • Spectrum
          • Arts
          • Behind the Scenes
          • News
          • Education
          • Community & Collaborations
          • Science
        • Eclipse
        • Studio for Public Spaces
        • Tangents
        • Resonance See & Hear Blog
        • Fabricated Realities
        • Tinkering Studio: Sketchpad
        • Exploratorium on Tumblr
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Our Story
    • Land Acknowledgment
    • Explore Our Reach
    • Impact Report
    • Awards
    • Our History
      • 50 Years 1969–2019

    • Leadership Cabinet
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists

    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
    • Teacher Institute
    • Institute for Inquiry
    • Explainer Programs
    • Studio for Public Spaces
    • Exhibit Making
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows

    • Job Opportunities
    • Become a Volunteer

    • Contact Info
    • Newsletter
    • Educator Newsletter
    • Blogs
    • Follow & Share
    • Press Office

    • FY21 Audit Report
    • 990 FY20 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate Today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join Our Donor Community
    • Engage Your Business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a Fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Volunteer
      • How to Apply
      • Application for Internships
      • Our Contract
      • Application for Individuals
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store

Masks and vaccinations are recommended. Plan your visit  

Visitor FAQ Buy Tickets Donate Today
Exploratorium
Exploratorium
  • Visit
    • Calendar
    • After Dark Thursdays
    • Buy Tickets
    • Exhibits
    • Museum Galleries
    • Artworks on View
    • Hours
    • Getting Here
    • Visitor FAQ
    • Event Rentals
    • Field Trips
  • Education
    • Professional Development Programs
    • Free Educator Workshops
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate Today!
    • Membership
    • Join Our Donor Community
    • Engage Your Business
    • Attend a Fundraiser
    • Explore Our Reach
    • Thank You to Our Supporters
    • Donor & Corporate Member FAQ
    • Host Your Event
    • Volunteer
  • Store
Science Snacks
Science activity that demonstrates the chemistry of batteries
Science activity that demonstrates the chemistry of batteries
Science activity that demonstrates the chemistry of batteries
  • Science activity that demonstrates the chemistry of batteries
  • Science activity that demonstrates the chemistry of batteries
  • Science activity that demonstrates the chemistry of batteries

Aluminum-Air Battery

Foiled again!

Use aluminum foil, salt water, and activated charcoal to construct a simple battery strong enough to power a small motor or light.


Grade Bands: 
6-8
9-12
Subject: 
Chemistry
Combining Matter
Physics
Electricity & Magnetism
Energy
Keywords: 
battery
salt
aluminum foil
alternative energy
video
electron
NGSS and EP&Cs: 
LS
LS1
PS
PS1
PS3
ETS
ETS1
CCCs
Cause and Effect
Scale, Proportion, and Quantity
Systems and System Models
Energy And Matter

  • Facebook logo
  • Reddit logo
  • Twitter logo


Video Demonstration


Tools and Materials

  • Aluminum foil
  • Scissors
  • Activated charcoal (available at aquarium supply stores)
  • Spoon
  • Paper towels
  • Salt 
  • Small cup
  • Water 
  • Two electrical leads with clips on the ends 
  • A small electrical device (such as a battery-powered DC motor or holiday light)
  • Masking tape

Assembly

  1. Cut a piece of aluminum foil that is approximately 6 x 6 inches (15 × 15 centimeters).
  2. Prepare a saturated salt-water solution: Dissolve salt in a small cup of water until some salt remains on the bottom of the cup.
  3. Fold a paper towel into fourths, dampen it with the solution, then place the towel on the foil.
  4. Add a heaping spoonful of activated charcoal on top of the paper towel, then gently crush the charcoal into fine bits using the back of the spoon. Pour some of the salt-water solution onto the charcoal until it is dampened throughout. Make sure the charcoal doesn't touch the foil directly; you should have three distinct layers, like a sandwich. This is your aluminum–air cell.
  5. Prepare your electrical device for use. If you are using a DC motor, attach a small piece of tape to the end of the motor shaft to serve as a “flag” so you can easily see when the motor is moving. If you are using a holiday light, strip the ends of the wires so that you can attach the leads.

To Do and Notice

Clip one end of each electrical lead to each terminal of the electrical device. Clip the other end of one of the leads to the aluminum foil. Firmly press the final clip on the pile of charcoal, then watch what happens. 

If the battery doesn’t seem to be working after a few seconds, you may need to reduce its internal resistance. Try increasing the contact area between the clip and the charcoal by folding the entire battery over the clip—like a taco—and pressing down hard. Make sure that the clip stays buried in the charcoal. If you are using a motor, you can also try kickstarting it by briefly spinning the flag.


What’s Going On?

Batteries convert chemical energy into electrical energy. They have two electrodes—called a cathode and an anode—where chemical reactions that either use or produce electrons take place. The electrodes are connected by a solution—called an electrolyte—through which ions can move, completing an electrical circuit. In this activity, the salt provides ions that can move through the wet paper towel and transfer charge. 

To generate electrical energy, this battery relies on oxidation of aluminum at the anode, which releases electrons, and a reduction of oxygen at the cathode, which uses electrons. The movement of electrons through an external circuit generates an electric current that can be used to power simple devices. A diagram of the battery and equations for the half and overall reactions are given below:

Equations for the half and overall reactions:

anode: Al(s) + 3OH−(aq) → Al(OH)3(s) + 3e−
cathode: O2(g) + 2H2O(l) + 4e− → 4OH−(aq)
overall: 4Al(s) + 3O2(g) + 6H2O(l) → 4Al(OH)3(s)

Aluminum foil provides an affordable supply of aluminum. Activated charcoal, which is mostly made of carbon, can conduct electricity and is non-reactive. It provides a highly porous surface that is exposed to oxygen in the air. One gram of activated charcoal can have more internal surface area than an entire basketball court! This surface provides a large number of sites to which oxygen can bind and participate in the cathode reaction.

This large reaction area makes it possible for the simple aluminum–air battery to generate 1 volt (1 V) and 100 milliamps (100 mA). This is enough power to run a small electrical device and provides a safe and easy way to make a powerful battery at home or in school.


Going Further

The first modern electric battery was made up of a series of electrochemical cells, called a voltaic pile. To make a voltaic pile, repeat Assembly steps 1–4 to construct additional aluminum–air cells. Stack two or three aluminum–air cells on top of each other to see if you can make a more powerful battery. Clip one lead to the bottom piece of foil and place the other lead in the top charcoal pile. Press down firmly on the pile to reduce the internal resistance of the battery, but make sure that the foil pieces don’t touch each other. If the foil from one cell is in contact with the foil from the cell above it, the electrons will bypass the paper towel and activated charcoal and move directly into the second piece of foil, which has a lower resistance than the charcoal layer. This effectively shorts out the lower cell, which no longer contributes to the overall power output. 

You can compare the power qualitatively by looking at the intensity of the electrical device or quantitatively by taking measurements on a multimeter. Use a multimeter to measure the voltage and current generated by your battery. What changes to the battery design result in a larger voltage or current? 

Calculate the power output from your battery by calculating the product of its voltage and current. Try to power other devices that require higher voltage or current, such as a string of LEDs (make sure they’re connected in the right orientation), a piezo buzzer, or a more powerful light.


Teaching Tips

Small electrical devices are available at electronic stores. Make sure the chosen electrical device will produce a noticeable change when connected to a one-volt power supply. 

This activity demonstrates oxidation and reduction reactions—integral parts of battery chemistry. The use of atmospheric oxygen as the oxidizing agent has extensions to other redox reactions that occur in corrosion, metabolism, and combustion. In addition, the participation of oxygen as a reactant in the aluminum–air battery can be used to introduce the concepts of fuel cells and alternative energy sources.


Resources

This activity is based on a demonstration by teachers from the Galileo Workshop in Japan. 



Related Snacks

Science activity that demonstrates charge in a battery
Hand Battery

Use your skin and different metals to create a battery.

Science activity that demonstrates the chemistry of a battery
Penny Battery

Light an LED with five cents.

Science activity that demonstrates conductivity of solutions
Conductivity Meter

Make a conductivity meter and let your electrolytes shine.



Creative Commons License



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions



Connect with us!



  •   Sign up for our educator newsletter

  •   Follow #ExploEDU

  •   Teacher Institute YouTube

  •   Teacher Institute Facebook

  •  teacherinstitute @exploratorium.edu

Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
415.528.4444

Contact Us

  • Plan Your Visit
  • Calendar
  • Buy Tickets
  • Getting Here
  • Store
  • Event Rentals
  • About Us
  • Become a Member
  • Donate
  • Jobs
  • Volunteer
  • Press Office
  • Land Acknowledgment

Get at-home activities and learning tools delivered straight to your inbox

The Exploratorium is a 501(c)(3) nonprofit organization. Our tax ID #: 94-1696494
© 2023 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |