• Visit
    • Buy Tickets
    • Calendar
    • After Dark Thursdays
    • Exhibits
    • Artworks on View
    • Getting Here
    • Event Rentals
  • Education
    • Professional Development Programs
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate today!
    • Membership
    • Join our donor community
    • Engage your business
    • Attend a fundraiser
    • Party at the Piers
    • Explore our reach
    • Thank you to our supporters
    • Host your event
    • Volunteer
  • Store
  • Visit
    • Buy Tickets
    • Frequently Asked Questions
    • Calendar
      • Today
      • This Week
      • After Dark Thursday Nights
      • Arts
      • Conferences
      • Cinema Arts
      • Free and Community Events
      • Fundraising Events
      • Kids + Families
      • Live Webcasts
      • Members
      • Ongoing + Series
      • Special Hours and Open Mondays
      • Private Event Closures
    • Hours
    • Getting Here
    • Museum Map
    • Reduced Rates & Community Day
    • Accessibility
    • Tips for Visiting with Kids
    • How to Exploratorium
    • Exhibits
    • Tactile Dome
    • Artworks on View
    • Cinema Arts
    • Kanbar Forum
    • Black Box
    • Museum Galleries
      • Bernard and Barbro Osher Gallery 1: Human Phenomena
        • Exhibition: Science of Sharing
          • Educator Activities
        • Tactile Dome
          • 1971 Press Release
        • Black Box
        • Curator Statement
      • Gallery 2: Tinkering
        • Curator Statement
      • Bechtel Gallery 3: Seeing and Listening
        • Curator Statement
      • Gallery 4: Living Systems
        • Curator Statement
      • Gallery 5: Outdoor Exhibits
        • Curator Statement
      • Fisher Bay Observatory Gallery 6: Observing Landscapes
        • Wired Pier Environmental Field Station
        • Curator Statement
      • PlayLists
        • All PlayLists
        • A Different Light
        • “We” or “Just Me”?
        • See Yourself in Cells
        • Greatest Hits: Gallery 2
        • Greatest Hits: Gallery 3
        • Greatest Hits: Gallery 4
        • Museum Map
    • Restaurant & Café
    • School Field Trips
      • Getting Here
        • Bus Routes for Field Trips and Other Groups
      • Prices and Discounts
      • Planning Guide
      • Reservations
        • Field Trip Request Form
      • Resources
    • Groups / Tour Operators
      • Group Visit Request Form
    • Event Rentals
      • COVID-Compliant Options
      • Full Facility & Gallery Bundles
      • Fisher Bay Observatory Gallery & Terrace
      • East Gallery
      • Bechtel Central Gallery
      • Osher West Gallery
      • Kanbar Forum

      • Weddings
      • Proms and School Events
      • Daytime Meetings & Events
      • Happy Hour on the Water

      • Rentals FAQ
      • Event Planning Resources
      • Rental Request Form
      • Download Brochure (pdf)
    • Exploratorium Store
    • Contact Us
    • Español
    • 繁體中文
    • 简体中文
    • 한국어
    • Français
    • Deutsch
    • Português
    • 日本語
  • Education
    • Black Teachers and Students Matter
    • Professional Development Programs
      • Teacher Institute
        • About the Teacher Institute
        • Summer Institute for Teachers
        • Teacher Induction Program
        • Leadership Program
        • Teacher Institute Research
        • CA NGSS STEM Conferences
          • NGSS STEM Conference 2020
        • Science Snacks
          • Browse by Subject
          • Special Collections
          • Science Snacks A-Z
          • NGSS Planning Tools
          • Frequently Asked Questions
        • Digital Teaching Boxes
        • Meet the Teacher Institute Staff
        • Resources for Supporting Science Teachers
      • Institute for Inquiry
        • What Is Inquiry?
        • Inquiry-based Science and English Language Development
          • Educators Guide
            • Conceptual Overview
              • Science Talk
              • Science Writing
            • Classroom Video Gallery
              • Magnet Investigation
              • Snail Investigation
            • Teacher Professional Development
            • Project Studies
            • Acknowledgments
          • Conference: Exploring Science and English Language Development
            • Interviews with Participants
            • Plenary Sessions
            • Synthesis, Documentation, and Resources
        • Workshops
          • Participant Portal
          • Fundamentals of Inquiry
            • Summary Schedule
          • BaySci Science Champions Academy
          • Facilitators Guides
          • Commissioned Workshops
        • Resource Library
        • Meet the IFI Staff
      • Resources for California Educators
      • K-12 Science Leader Network
      • Resources for Supporting Science Teachers
      • Field Trip Explainer Program
    • Tools for Teaching and Learning
      • Learning Toolbox
      • Science Snacks
      • Digital Teaching Boxes
      • Science Activities
      • Tinkering Projects
      • Recursos gratuitos para aprender ciencias
      • Videos
      • Exhibits
      • Publications
      • Apps
      • Educator Newsletter
      • Exploratorium Websites
    • Educator Newsletter
    • Advancing Ideas about Learning
      • Visitor Research and Evaluation
        • What we do
        • Reports & Publications
        • Projects
        • Who we are
      • Center for Informal Learning in Schools
    • Community Programs
      • High School Explainer Program
      • Xtech
      • Community Educational Engagement
      • California Tinkering Afterschool Network
        • About
        • Partners
        • Resources
        • News & Updates
        • Further Reading
  • Explore
    • Browse by Subject
      • Arts
      • Astronomy & Space Sciences
        • Planetary Science
        • Space Exploration
      • Biology
        • Anatomy & Physiology
        • Ecology
        • Evolution
        • Genetics
        • Molecular & Cellular Biology
        • Neuroscience
      • Chemistry
        • Combining Matter
        • Food & Cooking
        • Materials & Matter
        • States of Matter
      • Data
        • Data Collection & Analysis
        • Modeling & Simulations
        • Visualization
      • Earth Science
        • Atmosphere
        • Geology
        • Oceans & Water
      • Engineering & Technology
        • Design & Tinkering
        • Real-World Problems & Solutions
      • Environmental Science
        • Global Systems & Cycles
        • Human Impacts
      • History
      • Mathematics
      • Nature of Science
        • Measurement
        • Science as a Process
        • Size & Scale
        • Time
      • Perception
        • Light, Color & Seeing
        • Listening & Hearing
        • Optical Illusions
        • Scent, Smell & Taste
        • Tactile & Touch
      • Physics
        • Electricity & Magnetism
        • Energy
        • Heat & Temperature
        • Light
        • Mechanics
        • Quantum
        • Sound
        • Waves
      • Social Science
        • Culture
        • Language
        • Psychology
        • Sociology
    • Browse by Content Type
      • Activities
      • Blogs
      • Exhibits
      • Video
      • Websites
      • Apps
        • Total Solar Eclipse
  • About Us
    • Our Story
    • Explore Our Reach
    • Impact Report
    • Fact Sheet
    • Awards
    • Our History
      • 50 Years 1969–2019

    • Senior Leadership
    • Board of Trustees
    • Board of Trustees Alumni
    • Staff Scientists
    • Staff Artists

    • Arts at the Exploratorium
      • Artworks on View
      • Artist-in-Residence Program
      • Cinema Arts
        • History and Collection
        • Cinema Artists-in-Residence
        • Resources and Collaborating Organizations
        • Kanbar Forum
      • Center for Art & Inquiry
        • Begin Here
          • Lessons
            • Bob Miller/Light Walk
            • Ruth Asawa/Milk Carton Sculpture
          • Workshops
      • Resonance
        • About the Series
        • See & Hear
        • Past Seasons
      • Over the Water
      • Black Box
      • Upcoming Events
      • Temporary Exhibitions
      • Arts Program Staff
      • Arts Committee and Advisers
    • Teacher Institute
    • Institute for Inquiry
    • Online Engagement
    • Explainer Programs
    • Studio for Public Spaces
    • Exhibit Making
    • Partnerships
      • Building Global Connections
        • Global Collaborations
          • Projects
          • Approach
          • People
          • Impact
      • Partnering with Science Agencies
        • NASA
        • NOAA
      • Partnering with Educational Institutions
      • Osher Fellows

    • Job Opportunities
    • Become a Volunteer

    • Contact Info
    • Newsletter
    • Educator Newsletter
    • Blogs
    • Follow & Share
    • Press Office

    • FY20 Audit Report
    • 990 FY19 Tax Return
    • Use Policy
      • Privacy Policy
      • Intellectual Property Policy
  • Join + Support
    • Donate today!
    • Membership
      • Membership FAQ
      • Member Benefits
      • After Dark Membership
      • Member Events
      • May Is for Members
    • Join our donor community
    • Engage your business
      • Corporate Membership
      • Luminary Partnerships
    • Attend a fundraiser
      • Wonder Funday
      • Science of Cocktails
      • Party at the Piers
        • Event Leadership and Host Committee
    • Explore our reach
    • Thank you to our supporters
    • Volunteer
      • Benefits
      • How to Apply
      • Application for Corporate Groups
      • Application for Internships
      • Application for Professional Societies
      • Application for School Groups & Clubs
      • Our Contract
      • Application for Individuals
      • Opportunities
  • Press Office
    • Press Releases
    • News Coverage
    • Events Calendar
    • Fact Sheet
    • Photographs
    • Press Video
    • Press Kits
    • Press Visits
    • Exploratorium Logos
    • Recent Awards
    • Praise for the Exploratorium
    • Join Our Press List
  • Store
 

Learn with us online while the Exploratorium is temporarily closed. You can help us reopen—donate today.

Exploratorium
Exploratorium
  • Visit
    • Buy Tickets
    • Calendar
    • After Dark Thursdays
    • Exhibits
    • Artworks on View
    • Getting Here
    • Event Rentals
  • Education
    • Professional Development Programs
    • Tools for Teaching and Learning
    • Learning About Learning
    • Community Programs
    • Educator Newsletter
  • Explore
    • Browse by Subject
    • Activities
    • Video
    • Exhibits
    • Apps
    • Blogs
    • Websites
  • About Us
    • Our Story
    • Partnerships
    • Global Collaborations
    • Explore Our Reach
    • Arts at the Exploratorium
    • Contact Us
  • Join + Support
    • Donate today!
    • Membership
    • Join our donor community
    • Engage your business
    • Attend a fundraiser
    • Party at the Piers
    • Explore our reach
    • Thank you to our supporters
    • Host your event
    • Volunteer
  • Store
Science Snacks
Science activity to visualize air pressure with the help of a self-rolling pet toy
Science activity to visualize air pressure with the help of a self-rolling pet toy
Science activity to visualize air pressure with the help of a self-rolling pet toy
  • Science activity to visualize air pressure with the help of a self-rolling pet toy
  • Science activity to visualize air pressure with the help of a self-rolling pet toy
  • Science activity to visualize air pressure with the help of a self-rolling pet toy

Wiggle Pressure

Visualize air pressure with the help of a wiggling, wobbling, self-rolling pet toy.

Air molecules are too small to see, so it can be hard to imagine how they can apply forces and create pressure. Self-rolling pet toys can wiggle around erratically, pushing and moving objects a lot like air molecules do, modeling many of the behaviors of the molecules in gases.


Grade Bands: 
3-5
6-8
9-12
Subject: 
Chemistry
States of Matter
Materials & Matter
Data
Modeling & Simulations
Keywords: 
gas
model
molecules
pressure
volume
Boyle's Law
video
NGSS and EP&Cs: 
PS
PS1
PS2
CCCs
Patterns
Cause and Effect
Scale, Proportion, and Quantity
Structure and Function

  • Facebook logo
  • Reddit logo
  • Twitter logo


Video Demonstration


Tools and Materials

  • Two pieces of 2 x 4 lumber, each 12 inches (30 cm) long
  • Two pieces of 2 x 4 lumber, each 27 inches (69 cm) long
  • One piece of 2 x 4 lumber, 11 15/16 inches (29.5 cm) long
  • 3/16 inch drill bit
  • Long clamp
  • Eight #8 pan-head wood screws 2 1/2 inches long and screwdriver to fit
  • Eight #8 washers
  • Three battery-powered, self-rolling toy balls, such as Weazel BallsTM (usually sold as cat toys; available online or in pet stores), with batteries inserted
  • Timer

Note: “2 x 4” is the standard designation for lumber that is actually 1 1/2 inches (4 cm) thick by 3 1/2 inches (9 cm) wide.


Assembly

  1. Place a 27-inch (69 cm) piece of 2 x 4 hanging off the edge of the table. Drill two holes using the drill bit approximately 3/4 inch (2 cm) from the end of the board and approximately two inches (5 cm) apart. Repeat on the other side of the board. Do the same thing to the other 27-inch board.

  2. Using all but the short 11 1/2-inch (29 cm) length of wood, make a rectangular “arena” for the balls as shown in the picture above. The two 27-inch pieces should be on the outside and the shorter 12-inch pieces should be on the inside so that the interior dimensions are 24 inches by 12 inches (61 cm x 30 cm). (You’ll use the short length of wood later, in the To Do and Notice section.) Use the clamp to hold together the two long pieces against a short piece. Place a washer over each screw, and screw the sides together and repeat on the other side.


To Do and Notice

Turn on one of the balls, place it inside the arena, and watch as it runs into the walls. Does the ball apply a force to the wall with each collision? How might that force relate to pressure?

Count the number of collisions the ball makes against each wall of the arena over 10 minutes. Inside the arena, the long walls are twice the length of the short walls. How does the number of collisions with the long walls compare to the number of collisions with the short walls?

Turn on a second ball and add it to the arena. What happens to the number of collisions that occur each second? How might that relate to the pressure inside the container?

Place the 11 1/2-inch (29 cm) length of wood inside the arena so it divides the interior into two uneven sections, one twice the size of the other. It should be able to slide freely, changing the sizes of the two rectangular sections as it does. Turn on two balls and place one inside each section. The moving balls will hit the divider. Will the divider mostly stay in the same place or will it move? If you think the divider will move, can you predict where it will move to over time?

Move the divider to the center. Place two turned-on balls in one section and one turned-on ball in the other section, as shown in the animation below. After a long time (roughly 20 minutes), where do you predict the divider will be? Wait and see if your prediction is correct.


What's Going On?

In this model, the motions of the self-rolling balls are analogous to the motions of gas molecules: both move around in random ways. Pressure in contained gases arises from the force produced when gas molecules collide with the walls of the container.

In general, the pressure on a surface is equal to the total force on the surface divided by the area of that surface. A longer wall experiences more collisions, and thus greater forces, but since it also has a larger area, the ratio of force per area is maintained, and all the walls of an irregular container end up with the same pressure.

Over longer periods of time, the longer walls will be hit about twice as often as the shorter walls. Since each collision applies a force to the wall, the longer walls will have a larger aggregate force applied to them than will the shorter walls. Still, the number of collisions per length of wall is about the same for all the walls, since the longer walls get hit twice as often, and they are also twice as long.

When you place a divider into the arena, creating two uneven sections with a single ball in each section, the divider will slowly move toward the center and eventually reach equilibrium there. The ball in the smaller section hits the divider more often because it has less distance to travel between collisions. Over time, this tends to nudge the divider toward the middle, until the sections are of equal size.

The situation is quite different, however, when one section has two balls and the other section has only one. The two balls will strike the divider twice as often as the single ball, creating a net force on the divider that tends to expand the two-ball section and compress the one-ball section. The two-ball section expands until the number of collisions on each side of the divider is the same, or when the two-ball section is roughly doubled in size.

The expansion of the chamber you witness here is a demonstration of Boyle’s Law: For a gas at a constant temperature, the product of a gas’s pressure and volume remain constant. In other words, if you double the volume occupied by a gas, the pressure drops in half.


Teaching Tips

This Snack can help students make a mental model of what’s happening with air molecules at the microscopic level. But like all models, this one has its limitations. For instance, in this model, the balls always move at the same speed, and so can’t demonstrate how temperature affects air molecules.

Your choice and order of activities here will likely vary depending on your students’ needs. If they’re just beginning to develop a mental model of what molecules are doing, you might start with the simplest arrangement. If you’re introducing students to the laws of physics that affect the molecular motion of gases, however, you might start with the final arrangement—two balls in one section and one ball in the other—which makes for a more interesting phenomenon.



Related Snacks

Science activity that demonstrates the kinetic behavior of gas
Gas Model

A fun way to visualize gas molecules in constant motion.

Science activity that explores the relationship between the temperature and volume of a given amount of gas
Sizing Up Temperature

Discover the relationship between temperature and volume of a given amount of gas.

Science activity to make water boil at room temperature
Boyle-ing Water

Watch water boil at room temperature.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Attribution: Exploratorium Teacher Institute

  • Education
    • Teacher Institute
    • Tools for Teaching and Learning
      • Science Snacks
        • Browse by Subject
        • Special Collections
        • Science Snacks A-Z
        • NGSS Planning Tools
        • Frequently Asked Questions

Connect with us!

  •   Sign up for our educator newsletter
  •   Follow #ExploEDU
  •   Teacher Institute YouTube
  •   Teacher Institute Facebook
  •  teacherinstitute @exploratorium.edu
Exploratorium
Visit
Join
Give

Pier 15
(Embarcadero at Green Street)
San Francisco, CA 94111
(415) 528-4444

Contact Us

  • Plan Your Visit
  • Buy Tickets
  • Hours
  • Getting Here
  • Calendar
  • Tactile Dome
  • Store
  • About Us
  • Become a Member
  • Donate
  • Event Rentals
  • Jobs
  • Volunteer
  • Press Office

Get at-home activities and learning tools delivered straight to your inbox

© 2020 Exploratorium | Terms of Service | Privacy Policy | Your California Privacy Rights |